Spectral Invariants and Their Application on Spectral Characterization of Graphs

نویسندگان

چکیده

In this paper, we give a method to characterize graphs determined by their adjacency spectrum. At first, two parameters Π1(G) and Π2(G), which are related coefficients of the characteristic polynomial graph G. All connected with Π1(G)∈{1,0,−1,−2,−3} Π2(G)∈{0,−1,−2,−3} characterized. Some interesting properties Π2(G) also given. We then find necessary sufficient conditions for classes be

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L-spectral invariants and quasi-crystal graphs

Introducing and studying the pattern frequency algebra, we prove the analogue of Lück’s approximation theorems on L-spectral invariants in the case of aperiodic order. These results imply a uniform convergence theorem for the integrated density of states as well as the positivity of the logarithmic determinant of certain discrete Schrodinger operators. AMS Subject Classifications: 81Q10, 46L51

متن کامل

on the skew spectral moments of graphs

let $g$ be a simple graph‎, ‎and $g^{sigma}$‎ ‎be an oriented graph of $g$ with the orientation ‎$sigma$ and skew-adjacency matrix $s(g^{sigma})$‎. ‎the $k-$th skew spectral‎ ‎moment of $g^{sigma}$‎, ‎denoted by‎ ‎$t_k(g^{sigma})$‎, ‎is defined as $sum_{i=1}^{n}( ‎‎‎lambda_{i})^{k}$‎, ‎where $lambda_{1}‎, ‎lambda_{2},cdots‎, ‎lambda_{n}$ are the eigenvalues of $g^{sigma}$‎. ‎suppose‎ ‎$g^{sigma...

متن کامل

Approximating Spectral Invariants of Harper Operators on Graphs

We study Harper operators and the closely related discrete magnetic Laplacians (DML) on a graph with a free action of a discrete group, as defined by Sunada [Sun]. A main result in this paper is that the spectral density function of DMLs associated to rational weight functions on graphs with a free action of an amenable discrete group, can be approximated by the average spectral density functio...

متن کامل

-spectral invariants and convergent sequences of finite graphs

Using the spectral theory of weakly convergent sequences of finite graphs, we prove the uniform existence of the integrated density of states for a large class of infinite graphs. AMS Subject Classifications: 81Q10, 46L51

متن کامل

THE SPECTRAL DETERMINATION OF THE MULTICONE GRAPHS Kw ▽ C WITH RESPECT TO THEIR SIGNLESS LAPLACIAN SPECTRA

The main aim of this study is to characterize new classes of multicone graphs which are determined by their signless Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let C and K w denote the Clebsch graph and a complete graph on w vertices, respectively. In this paper, we show that the multicone graphs K w ▽C are determined by their signless ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Axioms

سال: 2022

ISSN: ['2075-1680']

DOI: https://doi.org/10.3390/axioms11060260